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Local periodic motions of a reversible system in the neighbourhood of the zero equilibrium position are investigated. In the 
non-degenerate case, to every pair of pure imaginary roots -+)~j there corresponds a symmetric Lyapunov family Lj, provided 
there is no resonance )~j + P~k = 0 (p • N). The scenario of the disappearance of the family L/~ as ~ ~ 0 (where e is the resonance 
detuning) is investigated. It is shown that resonant symmetric Lyapunov families LR~ arise and constructive conditions are obtained 
for the existence of LRu for both ~ = 0 and ~ # 0. W h e n p  = 1 the existence of two cycles is observed; the cycles are mutually 
symmetric about the fixed set of the reversible system and each is distant O('/~) from the origin. For a reversible system written 
in the form that is standard for oscillation theory, in "amplitude-angle" variables, a general theorem is established according to 
which symmetric periodic motions exist in the structurally unstable case; the theorem is basic for investigating the families LR~. 
© 2004 Elsevier Ltd. All rights reserved. 

1. P R E L I M I N A R Y  R E M A R K S  

In [1] we developed Lyapunov's idea of using a generating system containing a small parameter to study 
structurally unstable cases in the theory of periodic motions. In particular, a general existence theorem 
[1, Theorem 5] for periodic motions of a system of standard form was proved; necessary and sufficient 
conditions were obtaine% on the assumption that the system of amplitude equations has no multiple 
roots. The theorem has been used to study cycles in various almost-resonance cases [2], in generic systems 
and in Lyapunov systems. For reversible systems, the theorem needs a natural supplement, because in 
that case, as a rule, the system of amplitude equations admits of a family of solutions. Some important 
special cases of the proposition for reversible systems were considered in [1]. 

When investigating local periodic motions of an autonomous system (a Lyapunov system, a reversible 
system, or a generic system) in the neighbourhood of an equilibrium position, it proves useful to adopt 
a method in which rescaling the problem reduces to the problem of continuing the motion with respect 
to a small parameter. One thus proves the existence of one-parameter families of periodic motions near 
zero, in Lyapunov systems [3] and reversible systems [4, 5], and investigates cycles in Lyapunov systems 
and generic systems [2]. In resonance systems [2, 4, 5] one has the structurally unstable case of the theory 
of periodic motions of a system with a small parameter. 

Under certain restrictions, a smooth autonomous reversible system 

Ii = A v +  U(u,v)  

= B u + V ( u , v ) ;  u e  R 1, v e  Rn(l>_n) (1.1) 

U(n , -v )  = - U ( u , v ) ,  V(u , -v )  = V(u,v);  U(0,0)  = 0 ,  V(0,0)  = 0  

(A and B are constant matrices, and U and V are non-linear terms) admits of Lyapunov families of 
periodic motions in the neighbourhood of zero [5]. They are symmetric with respect to the fixed set 
M = {u, v: v = 0} of the reversible system, form an (l - n + 1)-family and exist if: (a) the characteristic 
equation of the linear approximation has a pair of pure imaginary roots, (b) none of the other roots 
equals +ipm (p ~ N), c) rankB = n. 

Do Lyapunov systems exist if one of these conditions is violated? Condition (a) cannot be dropped, 
because a Lyapunov family is by definition close to oscillations of a linear system due to a pair of pure 
imaginary roots. The case in which condition (b) fails to hold has been investigated for vector fields 
[6]. It was assumed there that dimU = dimV, and multiple roots were considered on the assumption 
that a Jordan cell exists. Finally, some cases with rankB = n - 1 have recently been considered [5], 
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observing, in particular a "non-holonomic constraint" effect, namely, the dimension of the vector u exerts 
an influence on the existence of Lyapunov families. 

Below, considering reversible systems formulated in the standard "amplitude-angle" variables of 
oscillation theory, we shall prove an existence theorem for symmetric periodic motions in the structurally 
unstable case. We shall then study the disappearance of Lyapunov families in almost-resonance situations. 
Finally, Lyapunov families will be investigated in the case of two-frequency resonances and for passage 
through resonance. 

In all cases, constructive, verifiable conditions will be obtained for the existence of the desired families, 
in terms of the coefficients of the normal form of the system. 

The problem of the existence of Lyapunov periodic motions is investigated for I ~> n. The cases of 
exact resonance and almost-resonance have both been analysed, and equations defining Lyapunov 
families have been obtained. According to part of a theorem of [5], when l > n one can transform to 
the neighbourhood of a selected point of the manifold of equilibrium and obtain a problem involving 
motions in the neighbourhood of the "new" zero equilibrium position in an almost-resonance situation. 
Hence the problem of the evolution of resonant Lyapunov families on passing from one point of the 
manifold to another, and when the resonance detuning parameter passes through zero, is solved in a 
uniform manner. 

In systems of general form, close to resonance systems, a cycle is produced as a rule at a distance 
O(e ~) from the equilibrium position, with ~ = I for 1:2 resonance and cy = 1/2 for 1:1 and 1:3 resonances 
[2]. In Lyapunov systems and Hamiltonian systems, cycles are produced at each level of the energy 
integral and they form a cycle of families (see [2] and [7, Chap. 8, Sec. 3.2]). Resonant Lyapunov families 
(with e = 0) also exist in such systems [8-12]. 

In a reversible system, periodic motions exist both when e = 0 and when e ¢ 0, forming resonant 
Lyapunov families near the equilibrium. This general rule is violated at 1:1 resonance. Here, along with 
a symmetric Lyapunov family, two cycles are produced, symmetric to one another relative to the fixed 
set, each distant O(4-~) from the equilibrium. 

2. P E R I O D I C  M O T I O N S  OF A R E V E R S I B L E  SYSTEM W R I T T E N  IN 
STANDARD F O R M  

To investigate a system with a small parameter, when the generating system admits of a family of periodic 
motions, it is convenient to use standard notation for the system in "amplitude-angle" variables. In the 
case of a reversible system, the "amplitudes" and "angles" split into two groups of "amplitudes" and 
two groups of "angles". Finally, we note that it is often convenient to use two small parameters [1], 
while in the general case the rate of change of each "amplitude" is individual. 

After these remarks, we express a reversible system as 

lfl~ = ~ P a u ~ ( e ,  u,  v,  t)  + ~ t ( g ) U l a ( e ,  g ,  u, v, t ) ,  ~ = 1 . . . . .  I 1 

~)~ = I~q~v~(l~, u ,  v,  t)  + ~l ,~ (g )Ul~(e  , g ,  u,  v,  t), ~ = 1 . . . . .  n 1 

uv = Uov(U, V, t) + eUv(e,  u, v, t) + gUjv(a ,  ~t, u, v, t), v = l j + l  . . . . .  I 

~)~. = Vo~.(B , v ,  t )  + EV~(g,  u,  v, t)  + gVl~. (E , g ,  u,  v,  t ) ,  ~, = n 1 + 1 . . . . .  n 

uj(~,  u , - v , - t )  = - v j ( e ,  u, v, t) 

U~j(e, g, u , - v , - t )  = -U~j (e ,  ~t, u, v, t), j = I . . . . .  l 
(2.1) 

Vk(E, u, -v, - t)  = Vk(e, u, v, t) 

V l k ( E , g , u , - v , - t )  = Vjk(E,  kt, U , V , t ) ,  k = l . . . . .  n 

Uov(U, - v , - t )  = -Uov(U, v, t), Vo~(U,-V,-t) = Vox(U, v, t) 

V = / 1 + 1  . . . . .  l; ~, = n l + l  . . . .  ,n  ( l > n ,  l l>_nl) 

(p~, q~ e N, g~,~(0) = 0; a = 1, . . . ,  l l ,  ~ --- 1 . . . . .  nl). The right-hand sides of the equations are assumed 
to be 2rt-periodic in t; e, p are small parameters. 
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Suppose, when ~ = 0 and g = 0, the system 

ti 2 = Uo(A, u 2, 0, v2, t), "¢2 = Vo(A, u2, 0, v2, t), A = const 

u : (Ul ,  u2)  , v = (Vl ,  v2) ;  u I ~ R/I ,  v I ~ R "~ 
(2.2) 

admits of 2~-periodic motions u 2 = ~¢(A, t), v2 = 0(A, t) which are symmetric with respect to the fixed 
set {n2, v2 : v2 = 0}. Then the necessary and sufficient conditions for 2~-periodicity of a solution of the 
reversible system (2.1) which is symmetric with respect to the fixed set M = {u, v : v = 0} are 

v~(e, ~t, u °, 0, n) = 0, 

vz(e, ~t, u °, 0, n) = 0, 

= l . . . .  , n t 

= n 1 + 1 . . . .  , n 

(2.3) 

(u ° is the initial value of the variable u). In that case the first group of Eqs (2.3) is satisfied identically 
in u ° at e = 0, g = 0. Therefore, in view of the fact that the rate of change of the variable v~ is proportional 
to eq~, we can write system (2.3) in the form 

~13(U 0) + ~II3(E, U 0) + ~13E-qgfl~(E, ~ ,  U 0) = 0 ,  ~ = 1 . . . . .  n 1 

i]~.(u°)+rll~.(e,u°)+gzgx(e,~t,u°) = 0, ~, = n l + l  . . . . .  n 
(2.4) 

where the functions {l~(e, u°), the(e, u °) vanish when e = 0. Hence it follows that if one chooses ~t~ = 
o(eq~), g = o(e) as ~ ~ 0, then system (2.4) is solvable for sufficiently small e : 0, provided the system 
of equations 

~l~(u °)  = 0 ,  q ~ ( u  °) = 0,  13 = 1 . . . . .  n 1, E = n 1 + 1 . . . . .  n ( 2 . 5 )  

is solvable and its solutions are such that 

rank 3 ~ / 3 u  °, 3 q ~ / 3 u  ° = n (2.6) 

For any ua ° = A, the second group of Eqs (2.5), admits of a solution u ° = ~(A, 0). Therefore  the 
problem of finding the roots of Eqs (2.5) leads to a solvable system 

~ f i ( A , ~ ( A ,  0 ) )  = 0 ,  ~ = 1 . . . . .  n 1 ( 2 . 7 )  

The functions ~fi are determined by integrating a system of differential equations 

~f~= V o ( O , A , q ~ ( A , t ) , O , ~ ( A , t ) , t ) ,  ~ = 1 . . . . .  n~ 

over the interval [0, rt]. Consequently, the roots of the equations are calculated from the system of 
amplitude equations 

I[~(A) = fV[~(0, A, ~p(A, t), 0, w(A, t), t )d t  = O, ~ = 1 . . . . .  n 1 (2.8) 

0 

To each root A* of these equations that satisfies the condition rank [[ aqdau2°l[ = n - n l  for u ° = A*, 
u ° = ~(A*, 0), there corresponds, for sufficiently small e : 0, a solution of system (2.4), provided that 

rankl]3l(A*)/OA*[[ = n I (2.9) 

This solution depends on l - n arbitrary parameters, of which ll - nl are chosen from the set {A1 . . . .  , 
Al~}; the remaining k = l - n - (ll - nl) determine, for every A, a k-family of symmetric 2re-periodic 
solutions of system (2.2). 

Thus, the existence of 2re-periodic motions in system (2.1) has been proved. These motions are 
described by formulae 
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t 

uu = A*  + eP=fUeL(O, A*, q)(A*, t), 0, ~(A*, t), t)dt + o(eP=), 
0 

t 

v[~ = equ iv , (o ,  A*, q0(A*, t), 0, ~I/(A *, t), t)dt + o(eq~), [~ = 
0 

U 2 = (p(A*,  t) + O ( ~ ) ,  0 2 = Rt(A*,  t) + O ( e )  

o~ = 1 . . . . .  l I 

1 . . . . .  n I (2 .10)  

and they form an (I - n)-family. 

Theorem 1. To every root A* of the amplitude equation (2.8) there corresponds a unique (1 - n)- 
family (2.10) of symmetric 2n-periodic motions of system (2.1), provided that: (a) condition (2.9) holds, 
(b) the variational equations for the solution u2 = q0(A, t), v2 = ~(A, t) of system (2.2) have for A = A* 
at most l - n - (li - nl) roots of the characteristic equation equal to unity, (c) ga = o(ae"), g~ = o(eq~), 

= o(~) as ~ --+ 0. 

Corollary. Cesari's method [13, 14]. To every simple rootA* of the amplitude equation 

I(A) = IV(0, A, 0, t)dt = 0 
0 

of a reversible system, 2re-periodic in t, 

~ i = g U ( g , u , v , t ) ,  ~ ' = g V ( g , u , v , t ) ;  u, v e R "  

U(la, u , - v , - t )  = -U(g,  u, v, t), V(g, u , - v , - t )  = V(I.t, u, v, t) 

with a small parameter p. there corresponds a 2n-periodic solution, close to a constant and symmetric 
with respect to the fixed set {u, v • v = 0}:  

t t 

u = A* + gj'U(0, A*, 0, t)dt + o(g), v -  glV(0,  A*, 0, t)dt = o(g)  
0 0 

Remark. In the case when system (2.1) is 2n-periodic in only part of the variables, the theorem establishes the 
existence of 2n-periodic rotational solutions (see [1, 15]). 

3. THE D I S A P P E A R A N C E  OF ONE OF THE TWO LYAPUNOV 
F A M I L I E S  AS THE SYSTEM A P P R O A C H E S  A R E S O N A N C E  SYSTEM 

In the case rankB -- n, system (1.1) may be reduced by a non-singular linear transformation to the 
following form [5] 

= P y + ~ . ( ~ , x , y ) ,  ~ R  t -"  

= J y  + X ( ~ ,  x, y )  (3.1) 

= x + Y ( ~ , x , y ) ,  x , y ~  R ~ 

(P is a constant matrix, J is a real Jordan matrix with real eigenvalues )~2 . . . . .  )~2 - the squares of the 
roots of the characteristic equation, and E, X, Y are non-linear terms). Let us assume that there are 
two pairs of pure imaginary roots and consider a situation close to the case in which there is a single 
two-frequency resonance 

~'1 + P~'2 = i~e, ~ = const, p ~ N (3.2) 
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(e is the resonance detuning).  The  remaining roots  satisfy condit ion (b) in system (1.1). Then,  by a 
t heo rem in [5], system (3.1) with e ~ 0 always admits of  two Lyapunov families, but  if ~ = 0 ,p  > 1, only 
the family corresponding to the root  ~i exists; the condit ions for  the existence of  the second family fail 
to hold. I f p  = 1 and e = 0, the condit ions for  the existence of  both  families indicated above for e ~ 0 
do not  hold. 

Suppose e e 0. We separate  out  the variables corresponding to the roots  _+)q and -+~2 and, making 
the rep lacement  of  variables (~j, x, y) ~ (~, Itx, Ity), int roduce a small pa ramete r  It. We obtain 

= ItPy + ItZ*(it,  {,  x, y)  

2 
JCl = ~IYl + gX~(it ,  ~, X, y),  )~ = X I + ItY*(it, ~, x, y) 

(3.3) 
Yc2 = ~'~Y2 + I tXz( i t ,  {, x, y),  292 = x2 + ItY~'(it, {, x, y) 

~t, = J s y ~ + i t X s ( g , { , x , y ) ,  Ys = X s + i t Y * ( i t , { , x , Y ) ,  s = 3 . . . . .  s*; s*<_n 

(Xs and y~ are vectors with the dimensionali ty of  the Jordan  cell J~ corresponding to the eigenvalue h~). 
If  It = 0, system (3.3) admits of  a family of  per iodic  solutions symmetric with respect  to the fixed set 
{~, x , y  : y  = 0), 

= {o ({0 = const) 

xa = 0JaaacosOlc, t, Ya aasin¢°cd, ~c~ ct. = = - ( - 1 )  t¢Oa(C0a>0 ), a a = c o n s t ;  o ~ = 1 , 2  

n n 

xf l = Z a*q~f~j(t), y~ = Z aYvflJ (t); 
j=3  j=3  

a * , a j  = const, ~ , j  = 3 . . . . .  n 

cpf~j(-t ) = ~pf~j( t ), l l t~j(-t ) = -~ti~j( t ) 

where,  since, if e = 0, there  is only one  resonance,  we have 

detllV~j(~/c°,, 2)11 :¢ 0 (3.4) 

The  necessary and sufficient conditions for the existence of a symmetric 2T-periodic solution of system 
(3.3) may be wri t ten in the form 

a~sino~aT + gy*( i t ,  {* ,  a 1 . . . . .  a n, T)  = O, o~ = 1, 2 

" (3 .5 )  ~, ajq~i(T) + Ity~(it, {*, a 1 . . . . .  an, T) = 0, ~ = 3 . . . . .  n 
j=3  

If It = 0, system (3.5) has two obvious solutions for the constants al  . . . . .  an such that  a~ = 0 ([3 = 3, 
. . . ,  n), and one  of  the a~s is not  zero (T  = rc/~0a). Therefore ,  taking conditions (3.5) into account,  we 
obtain: if It ~ 0, system (3.5) has a solution such that  

a I = O(1) ,  T = ~/01 l + O ( I t ) ;  a 2 . . . . .  a n = O( i t )  

(a I is an arbitrary number) .  Thus  a Lyapunov family for the pair  of  roots  -+9~1 will always exist. 
If It = 0, system (3.5) also has a non-trivial solution al  = 0, a2 = 1, a3 = ... = an = 0, T = rc/o32. Let  

us write the first two equat ions of  system (3.4) in the form 

( -1)Pa l  s in(Pto2AT+ eT) + ItYl*(it, ~*, a! . . . . .  an, T) = 0 

a2 sin(to2AT) + * - ItY2(t t , ~ * , a l  . . . . .  an, T) = 0, AT = T- / t /o~  2 
(3.6) 

Hence  it follows that, if It ~ 0, e ;a 0, system (3.5) has a solution such that 

a 1 = O(i t /e) ,  a 2 = 1, a 3 = O(it)  . . . . .  a ,  = O(it),  AT = O(it)  (3.7) 
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The parameters e and g in Eqs (3.6) are independent of one another. Moreover, for fixed ~ we have 
al = O(g). Thus, a solution (3.7) of system (3.5) exists when g < go, go = o(e). Hence we infer that, 
together with e, the amplitude of the periodic oscillations corresponding to the frequency 032 tends to 
zero: the Lyapunov family disappears. 

Theorem 2. Suppose the characteristic equation of system (3.1) has two pairs of pure imaginary roots 
+-~1, +L2, which satisfy relation (3.2), and the remaining roots are not multiples of X2. Then the maximum 
amplitudeA2 of oscillations on the Lyapunov family corresponding to the roots +-)~2 isA2 = O(~), and 
as e ~ 0 this family contracts to the equilibrium ~ = {*, x = 0, y = 0 and disappears. 

Remark. By a theorem in [5], system (3.2) has a manifold to equilibrium positions depending on ~*, with a 
Lyapunov family near each. All the families corresponding to roots ---)~2 disappear as e ~ 0. 

4. T H I R D - O R D E R  1:2 R E S O N A N C E  

In what follows, when considering specific resonances in system (3.1), attention will be confined to the 
sub-system corresponding to the resonant roots -+~1, -+)~2. 

We reduce system (3.1) to normal form up to terms of the required (second or third) order. To do 
this, as in [2], we apply to system (3.1), which is almost resonant, a normalizing transformation which 
is continuous in the parameter e. We then introduce a small parameter g using scaling. 

In complex-conjugate variables z and ~ we obtain 

2 

Zs ~,sZs + l-riBs H -P~- ~ 2~ . = zc, + g  Zstg, z,f~), s = 1,2 
o t = l  

)~1 +2K2 = i~E; Pl = 1, P2 = 2; Z~(g, 0,0) = 0 

(B~ are real constants). We consider the non-degenerate case, when Bs : 0 (s = 1, 2), and, using the 
formulae 

z, = [,~s[r, exp(i0~), ~, = ~ l r s e x p ( - i O s ) ;  s = 1,2 

transform to polar coordinates (rs, 0s). We obtain a reversible system 

i~s = 21.tBsignB~dr~lr2sinO + o (g )  

gB signB~ 2 p/2-8~a 
t}s = - i~. 2 -t H re* coso + o(g); 

2ir~/2 c~ = I 
s = l , 2  (4.1) 

which is invariant with respect to the substitution (t, r, 0) ~ (-t, r, -0). 
The last two equations for 0s are replaced by a single equation for the angle 0 = 01 + 202: 

- -  I / 2  - -  

= 2signB2r I )cos0 + o(g) 0 K~ + g B ( s i g n B l r  I r 2-1- 1/2 (4.2) 

and the angle 02 is taken as the new independent variable. The resulting third-order system, which is 
periodic in 0 and 02, has the obvious solution 

0 0 = 
r s - r s (rs =const), 0 = K:e02+0 °, 0 ° const; s = 1,2 (4.3) 

If e = 0, this solution will be a constant; if sin0 ° = 0, it will be symmetric relative to the fixed set 

M .  = {r Z,r 2,0,02 : s i n0=0 ,  s in02=0} 

Suppose e = lx ~, 6/> 1. Then it follows from Theorem 1 that to the constant solutions of the amplitude 
equation 
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~*4fql + B ( s i g n B z r  2 + 2signB2q)cos0 = 0 (4.4) 

(~:* = ~c if 6 = 1 and ~c* = 0 if cy > 1) there correspond for bt < ~-I1 (where gl is some finite number) a 
symmetric periodic solution 

0 00 r s = r s + O ( g ) ,  s = 1,2, 0 = +O(p.) (4.5) 

(0 ° = 0 or rt). Taking into consideration the fact that in system (3.1) 

)v s = i [ - ( - 1 ) s c % + r , ~ e ] ,  ~ = const; s = 1,2; ~q+P~:2 = ~c (4.6) 

we obtain the form of the solution in system (3.1) 

x, g[m s (-1 s o = - ) KsP ]asc°sOs, 

0 = 00 + O ( g ) ,  e 1 = o -  202,  

(r ° and r ° are related by Eq (4.4)). 

2 o 
Ys = ~tassin0,, a, = [Bs[r , + O ( g ) ;  s = 1,2 

(4.7) 
o 0 

02 = [ -m  2+1¢2g +O(I.t)]t+02 

If ~ = 0, we have exact resonance. In that case, system (4.1) is independent of the parameter ~. 
Formulae (4.7) define a resonant family of symmetric Lyapunov motions near equilibrium. As is obvious 
from the amplitude equation (4.4), such a family exists only in the neighbourhood of a stable equilibrium 
(B1B2 < [16]). The resonant family is represented in the (r°l, r2 ° ) plane by the straight line r2 ° = 2rl ° 
(Fig. 1); the Lyapunov family corresponding to the roots -+)~1 lies on the abscissa axis. 

If ~c # 0, we have on every curve ~ = go a periodic system which depends on g. If bt < btl, system (3.1) 
also admits of the family of periodic motions (4.7). For each fixed/.t system (3.1), containing e =/.t  a, 
has a family (4.7), which depends on one arbitrary parameter - the amplitude r °. 

Thus, for any e i> 0 we have a Lyapunov family near equilibrium. This is the basic difference between 
local periodic motions in a reversible system and in other systems - generic, Lyapunov and Hamiltonian. 

The generation of a non-trivial periodic motion when e ;e 0 has been observed in a generic system 
as a cycle; in Lyapunov and Hamiltonian systems one obtains a family of cycles at each energy level 
[2]. 

In Lyapunov and Hamiltonian systems, only for e = 0 do resonant Lyapunov families exist near an 
equilibrium [8-12]. 

In the case when cy > 1 the amplitude equation (4.4) does not depend on e and the family (4.7) exists 
only in the neighbourhood of a stable equilibrium. If 6 = 1, the solution of Eq. (4.4) has a different 
form depending on whether there is a stable or unstable equilibrium. 

Suppose a stable equilibrium is being considered ( B I B  2 < 0).  In (rl, r2, 0) space the amplitude equation 
(4.4) has the form 

0 0 
*Jr° l l (BcosO ), sin0 ° 0 (4.8) r2 = 2 r  i _ ~ o o = 

and admits of two families of solutions: 0 ° = 0 and 0 ° = n (Fig. 2). If n* = 0 (exact resonance), the 
Lyapunov family is represented by the straight line r ° = 2r ° in the (r °, r °) plane. This family also exists 

-0 0 0 

rO 

O----- 
r 0 

Fig. 1 
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r~ 

..... l-I 2 

/ 
r, o 

Fig. 2 

/ ¢ / /  K* 

/ /  

/ 
r? 

Fig. 3 

i f e > 0 ( ~  g G , ~ > l )  and is represented by a plane Il in 0 o = (rl, r2, ~:*) space. As before, it is near zero 
r ° = 0, r2 ° = 0. If ~c* > 0, the family r ° = 2r ° splits into three families, one of which is represented by 
the plane H. The other two families are defined by Eqs (4.8). One of them, H~(0 ° - ~), is near the 
~:* axis, the other, H0 (0 ° = 0), is near the points ~:* = 2B'~rl °. In the (r °, ~:*) plane there is a Lyapunov 
family corresponding to the roots +;~v This family bifurcates on the straight line 1¢* = 2Bq-~I and becomes 
the family H0. Obviously, there is also a Lyapunov family in the (r~, ~:*) plane if ~c* > 0, corresponding 
to -+Ka. 

The non-resonant Lyapunov families, whose existence was established in [5], are shown in Fig. 2 by 
the hatching. 

We will now consider the case of an unstable equilibrium (B1B 2 > 0). In that case the amplitude 
equation is 

r2° = _ 2r lo _ ~:* ~rl0/(Bcos0O o), sin0 o = 0 (4.9) 

In the case of exact resonance there is clearly no Lyapunov family. A similar situation occurs when 
= g~((y > 1). If ~ = 1, the family 0 ° = 0 exists only for ~:* < 0, and the family 0 ° = n for •* > 0 

0 , , (Fig. 3). The corresponding surfaces are situated below the (rl, ~: ) plane, cutting it along the ~: axis 
and the straight lines ~:* = +_2B~r° 1. The families are near zero and simultaneously cut the family Ill, 
corresponding to roots +)~1. The family I I  1 bifurcates on the straight lines ~c* = -+B'[@ For every fixed 
~:*a the family of Lyapunov motions is represented by points of a curve parallel to the (r °, r °) plane and 
contains, in particular, points near the equilibrium r ° = 0, r ° = 0. Oscillations occur at an amplitude 
O(e_A), where A depends on the selected point of the curve (Fig. 3). 
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Theorem 3. In a reversible system with r e s o n a n c e  £1 -t- 2£ 2 = i~ce (where ~ = const and e is a small 
non-negative number), depending on the signs of the number B1 and B2, the following Lyapunov families 
of periodic motions exist. 

In the neighbourhood of a stable equilibrium (BIB 2 < 0) with a = 0 (exact resonance), we have a 
resonant family (r2 ° = 2r °) near the equilibrium. If ~:a # 0, this family splits into three surfaces, one of 
which corresponds to 0 ° = 0 (ri0), another to 0 ° = 7t(ri=), and on the third, the plane 17, we have 
r2 ° -- 2r °. Periodic oscillations on these surfaces are described by formulae (4.7) with a = g~ ((y > 1) in 
the plane 17 and ~ = Ix on the other surfaces. If ~:* > 0 (<0), the family 170 (FI=) is separated from (near) 
the equilibrium. In the coordinate planes Lyapunov families Ha and 1-I2 exist corresponding to pairs of 
roots -+£1 and -+£2, but the family 172 exists only if a ,  0. 

In the neighbourhood of an unstable equilibrium (BIB2 > 0) there are no resonant Lyapunov families. 
If ~:* < 0, only the family FI 0 exists, and if ~* > 0, only ri=; the motions are described by formulae (4.7) 
with o = 1. Families FI 1 and 172 exist as before. 

5. THE S T A B I L I T Y  OF L O C A L  P E R I O D I C  M O T I O N S  AT 
1:2 R E S O N A N C E  

Consider the following third-order system, which is periodic in 02 and 0 

dr-'-'Ls = ~2 
dO 2 [ 2 B s i g n B s 4 ~ l r z s i n e  + ~ s R s ]  

dO [B(signB1 r--~2~ + 2signB2,ffl 1 cos0+ - + 2 ~  ~ 2  ~p,o + Ix 
2t. Lt ,  4rl ~ ,fr2 

(5.1) 

(I) 2 - - - - - 0 ) 2 + K 2 g ° + l l [ 2 B s i g n B 2 ~ f ~ l +  O-~-2|, ( ] Rs, O s = o ( p . ) ;  s =  1,2 
C drd 

For a solution 

o 
r s = r,+O(~t) ,  s = 1,2; 0 = 0 ° + O ( g ) ,  

~ - 1  r--o . 0 • 0 
~cg 4r l  + 2 B ( s l g n B l r  2 + slgnB2rl) = 0 

s i n 0  ° = 0 

(5.2) 

we formulate variational equations in the first approximation in Ix 

d ( A r  s) 2g  /~ o o o 
= "--Bsi~nBs*lr'r2c°sO,~ ,v , - A0 

d02 0)2 

d(A0) _ gB . o o . o 0 
dO z _ o--~o [(2slgnB2q - s ignBlr2)Ar l  + 2 s l g n B l q A r 2 ] c ° s O  

z r  I ~ / r l  0) 2 

(5.3) 

The characteristic equation of system (5.3) has a single zero root; two other roots are defined by the 
relation 

2 2 ~ 2  0 .  0. - 1 . .  0 • ~ 0 
p = [1 tl r2(0)2rl) ( 4 r l s l g n t ~ l B 2 +  r2 )  (5.4) 

Hence it follows at once that in the neighbourhood of an unstable equilibrium (B1B2 > 0) all periodic 
motions of the families FI 0 and II~ are unstable. 

To evaluate 9 for a stable equilibrium (B1B 2 < 0), we use (5.4), taking Eqs (4.4) into consideration. 
This gives 

2 2 2 0 0 -1 0 
o = B [2 r +  */(Bcos0°)l 
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Thus, at exact resonance the Lyapunov family is stable. It remains stable if ~ = p.°, G > 1 (family II). 
If o = 1, then for ~ > 0 the stable family is gl0, but if ~: < 0, the stable family is 1-I~. Finally, depending 
on the combined influence in system (3.1) of the non-linearity and the magnitude of the detuning, we 
obtain: the family YI 0 (lq~) is stable for ~: < 0 (~c > 0) if I K[ < 2B'~rl°; otherwise, it is unstable. These 
properties reflect the fact that the family of unstable periodic motions is near a stable zero. 

Theorem 4. In the case of 1:2 resonance, the Lyapunov families in the neighbourhood of an unstable 
equilibrium (B1B2 > 0) are hyperbolic. If the equilibrium is stable, the resonant Lyapunov family is 
stable and transforms to stable families 17, II0(~c > 0) and II~(K < 0). The families II0(~c < 0), 
II~(~: > 0) are stable if I~:[ > 2Bff~r~ and hyperbolic if I ~;[ < 2B'~r°l • 

Remarks. 1. A family is said to be stable if it consists of stable periodic motions. 
2. The stability of solution (5.2) of Eq. (5.1) was investigated in the first approximation in the variables rl, r2, 0 

and the parameter g. The conclusions of Theorem 3 as to hyperbolicity guarantee that the periodic motions will 
be unstable in Lyapunov's sense. 

6. THE D E G E N E R A T E  CASE 

The case usually encountered in mechanical problems is the degenerate one, B = 0. In that case the 
second-order terms in the normal form vanish, and system (3.1) in variables z and ~ becomes 

Zs )"sZs + igZ[Asl 2 2 3 Z = Izl[ +aszlZzl ]z~+~t ~(g,z ,~) ,  s = 1,2 (6.1) 

(A~y are real constants). 
The normal form of a reversible system also has the form (6.1) in the case when there are no 1:1, 

1:2 or 1:3 resonances. Consequently, we have a general problem concerning the family of Lyapunov 
periodic motions in degenerate cases for these resonances and for l:p, p > 3, resonances. 

The amplitude equation in the cases of interest here may be written as follows: 

K * + ( A ~ r  l + A*r2) = 0, sin0 ° = O, A*~ = A,l  + pA~2, s = 1,2 
(6.2) 

~'1 -I- P)~2 = i~:e (~ = const), p = 1, 2 . . . .  

(K* = ~:for a = g2 and K* = 0 for e = ~t ~ +1, o > 1). 
We will consider two cases. I fA~A~ < 0, the surfaces of the Lyapunov families are shown in Fig6 4a. 

A resonant family (~ = 0) exists and is near zero. It is the intersection of families II(e = g + 1, 2 0 0 (y > 1) and II*(e = p ), which exist both for 0 = 0 and for 0 = n. 
In the case when A ~A ~ > 0 (Fig. 4b, A ~ > 0), there is no resonant family, and if ~: ~ 0, there is only 

the family l-I*. 
All periodic motions are described by formulae (4.7) with ~t replaced by g2, and they are stable. The 

families 171 and 172 are shown, as before, by hatching. Theorem 1 implies the following theorem. 

Theorem 5. In the degenerate cases of 1:1, 1:2 and 1:3 resonance, and at resonance l :p (p > 3), the 
families of Lyapunov periodic motions are defined by the amplitude equation (6.2). I fA~A~ < O, a 
resonant family exist, through which pass planes - the families II and rI*. I fA~A~  > 0, there is no 
resonant family, and if K*/A~ < 0, only the family I1" exists. 

7. F O U R T H - O R D E R  1:3 R E S O N A N C E  

In the case considered, the normal form of the system up to and including third-order terms, taking 
scaling into account, is 

i 2 -Pa-~sa I 3 Z • 2 2 2 
i ,  = ~.sZ,+,~t (A,,Izl I +A,21z2l )z~ + in, [-I z= +~t ,(g.z,~). s = 1,2 

~=1 
(7.1) 

(Asj and B s are real numbers). As in Section 4, we consider the non-degenerate case BIB2 ¢: 0 and 
introduce polar coordinates. Next, taking 0 to be the angle 0 = 01 + 302 and taking the expression (4.5) 
withp = 3 into consideration, we can write down a third-order system, periodic in 0 and 02 
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Fig. 4 

t - r2sm0 + O(g 3) 21a2 signBs4~rl 3 .  

dO ~2{ 1/2 112 3 dO2 IcE+p2BIA,r l  +A~r2+r" -'/2 3/2 . . . .  tsignBlrl r 2 +3signB2r I r e ) c o s 0 + O ( g  ) 

~ • ~ I /2  1/2 ¢~x 
~2 = - c°2 + ~2g ~ + gZ(A21Blrl + A22B2r2 + MJslgnt~2rl r2 coso) + O(~t 3) 

(7.2) 

A s : As. +3As2, A*~ : AsBs/B, B : ]~II[B213 

The amplitude equation for system (7.2) is 

, o , o  • o o r2 o 
~¢*+B A l r l + A 2 r z + ( s l g n B l r 2 + 3 s i g n B 2 r l )  cos0 = 0, sin0 ° = 0 

t~rl ] 

(the constant ~c* vanishes when e = gz + 1(o > 1) and ~;* = ~; when e = ~2) .  By Theorem 1, Eq. (7.2) 
defines all the Lyapunov families at 1:3 resonance. 

Theorem 6. In the case of 1:3 resonance, all Lyapunov families of symmetric periodic motions are 
defined by the amplitude equation (7.2). In the original system (3.1), these periodic motions are described 
by the formulae 

s ~+1  2 0 
x~ = g [ O ~ - ( - 1 )  Ks~t ]asc°sOs, Ys = ~tassinOs, as = [Bslrs+ O(g2), 

0 = 0 °+O(g2) ,  01 = 0 - 3 0 2  , 02 = [_o2+~ :2ga÷ l+O(g2) ] t+0~  

s = l , 2  
(7.3) 
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(0 ° = const, ~ >/1; the constants Ks are as defined in (4.6)). Depending on the coefficients A 7, A ~, B1 
and B2, the families exist both at exact resonance (e = 0) and if e ~ 0. The conditions for these families 
to exist are the same for e = 0 and e = g~r + 1(~ > t),  but for e = g2 we have ,c* = ~: in (7.2). 

Let  us analyse the conditions for Lyapunov families to exist when e = 0 and ~ = g~-  i(c~ > 1). In 
that case ~* = 0. 

1. B1B2 > 0. The amplitude equation (7.2) becomes 

= ----. 0 0 
A T+A~u+(3+u) , , /~  = 0, cos0 ° 0, sin0 ° 0, u = r21r 1 (7.4) 

In the case when A ~ = 0 a family always exists - but only one, defined by the equation 

(3 ÷ = IA *I 

In the other special case, IA~ + A~[ = 4, the root of Eq. (7.4) is u = 1. This case corresponds to the 
0 0 boundary of the stable domain of the equilibrium [16] and yields a Lyapunov family rl = re near 

equilibrium. 
In the case whenA~ ¢ 0, we rewrite Eq. (7.4) as 

f (u )cos0  ° = k~/u 

f (u )  = - (A + u)/(3 + u), k = 1/A~, A = A~/A'~ 
(7.5) 

I fA = 3, we have u = [_.zl~12, and there is a Lyapunov family. I rA ~ 3, the relative positions of the 
graphs of the functions f(u)  and k* '~  (k* = kcos0 U) are as shown in Fig. 5. Clearly, in the case when 
A > 0 (Fig. 5a) the graphs intersect at a single point (when k* < 0), proving the existence of just one 
family, 0 ° = 0 or 0 ° = re. 

If 0 < A < 3, the zero of the functionf(u) lies to the left of the equilibrium (Fig. 5b) and the graphs 
0 , A 2  ~ 0. intersect at only one point; a family with k' < 0 exists. The case A = 0 is trivial. Here  A ~ = * 

There is only one family. But i fA < 0 (the curve f(u) is shown in Fig. 5(b) by the dashed line), there 
is always an intersection (at k* > 0). The other family appears when k* < 0 as lk* I decreases. 

IfB1B2 > 0, the equilibrium will be unstable if [A~ + A~[ < 4 [16]. It follows from the previous analysis 
that in that case there is at least one Lyapunov family. 

2. B1B2 < 0 (stable equilibrium). The amplitude equation is again as in (7.5), except that here 
f(u) = -(A + u)/(3 - u). It is obvious that, ifA = -3, there is a single family r ° = r2 °. IfA ~ -3, the relative 
positions of the graphs of the functions f(u) and k*'~'~ are as shown in Fig. 6. When A > -3 (Fig. 6a) 
there may be one (k* < 0) or two (k* > 0) families; one of the latter is not near the equilibrium if 

~ 0. VVhenA < -3 there is always one family (at k* < 0), and depending on the values of the quantities 
A and k* > 0, there may be one or two families (Fig. 6b). 

The stability of the local periodic motions at 1:3 resonance is investigated on the basis of variational 
0 0 0 equations. For the solutions (rl, r2, 0 ) defined by the amplitude equation (7.2) we have 
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(a) 

a > - 3 1 , \  k*>0 

(b) 

f A <-31J k* ! > 0 

Fig. 6 

d(Ars) 2p- 2 • ~ o o 3 o 
= - ~ B s l g n B s q r i r 2  cos0 A0, s = 1,2 

d 0  2 co 

d(A0) = _ B a ~ A r  z + a * A r  2+2 d02 - - - s i g n B l ( - r z A r  1 + 3rlAr 2)+ 

3 o 0 
+ ----~signB2(r2Ar s + rlAr 2) 

JrT  c°s0° t ;  f D "  022 

(7.6) 

The characteristic equation of system (7.6) has one zero root. The other two roots are ___g2Bco-ap,, 
where 

2 f ~ 3 [ - 0  0 3 , • , • 0 
p .  = ~[rlr2[2(A 1 slgnB1 + Z  2 slgnB2)cos0 + 

L 

0 

+~uu+3Sign(BiB2 ) , f ~ + l  -~uu 3 u = --6 
~fu ' r!  

Consequently, if P, < 0, we have a stable periodic motion, but if p ,  > 0, the periodic motion is hyperbolic. 

8. 1:1 R E S O N A N C E  

In the case of multiple roots with simple elementary divisors, as well as cases close to that of simple 
roots, the normal form is 

i. s = 2g2[(Bslrl + Bs2r2) r~f~lrzsin0 + bsrlrzsin20] + O(la 3) 

l -  
Os (-1) s- ~CO + ~;se + ~t2[A = slrl + As2r 2 + (Bszr 1 + B~2rz) I - - c o s 0  

L ~1 rs 

¢I+K2 = ~:e 0 % 2 = c o n s t ) ,  s = 1,2 

+ bsr 3 _sCOS201 + O(Itt 3) (8 .1)  

(Asj, Bsj, bs are constants, ~ is the resonance detuning, and g is a scaling factor). In this system all families 
of periodic motions, symmetric relative to the fixed set {ra, r2, 0i, 02" sin0a = 0, sin0~ = 0}, are defined 
by the amplitude equation 
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2 0 
:~ 0 1~ 0 0 0 0 2 ~ 0 \ C O S 0  

~:*+Alrl+A2r2+(Br~r2+B21 q +z,12r2)---- ~ = 0, sin0 ° = 0 
,k/rl r 2 

Al* = A l + b  2, A~ = Az+b  1, A s = Als+A2s, s = 1,2; B = B11+B22 

(K* = 0 if e = 0 or e = bt ~ + 1, a > 1; ~:* = ~: if e = g2). If ~* = 0, this equation reduces to 

(8.2) 

o 0 
(A* + A*u)~-u + (B21 + Bu + B 1 2 u 2 ) c o s 0  0 = 0, sin0 ° = 0, u = r21 q (8.3)  

Thus, the problem of the existence of symmetric Lyapunov families will be solved by finding the roots 
of Eq. (8.2) or Eq. (8.3). 

The distinctive feature of 1:1 resonance is that a non-symmetric isolated periodic motion (cycle) may 
exist. In fact, if bt = 0, the equations for r °, r°2 have constant solutions in which sin0 ° # 0, where 0 ° is 
determined from the condition 0 = 0. 

The system of amplitude equations [2] for determining non-symmetric periodic motions may be written 
in the form 

0 ~ 0 , 0 ~  ^0  
Bslrl+t~s2r2+osdqr2cost~ = 0, s = 1,2, s in0°*0  

02 ~ 02, COS 0 0 0 0 0 
~c* + Zlr°l + A2r ° +(Br°r~ + B21rl +//12r2 ) - - - - ~ + ( b l r  2 + b2q)cos20 = 0 

~1 r I r 2 

Now, using the variable x 2 0 o = rl/r2, we rewrite the first two equations of system (8.4) in the form 

B s l X  2 + b s x c O s O  0 + Bs2 = O, s = 1, 2 

(8.4) 

Next, multiplying these equations by b2 and bl, respectively, and subtracting one of the resulting equations 
from the other, we obtain 

Then 

2 B l 2 b 2  - B22b l  
x = > 0 (8 .5)  

B l l b  2 - B21b  1 

cos00 = _BlzB21 - B11B22 -1 x (8.6) 
B21b 1 - B l z b  2 

Finally, it follows from the third equation of (8.4), taking relations (8.5) and (8.6) into consideration, 
that 

0 
r 2 = -~*/G, G=AlX2+A2+(Bx+B21x2+B12x-1)cosO°+(bl+b2x2)cos200 (8.7) 

It obvious from formula (8.7) that a cycle exists only if n* = n ¢ 0, that is, in an almost-resonance 
situation. Hence it also follows that e = g2, that is, a cycle will appear at a distance ~/e from zero. Finally, 
formula (8.15) implies the generation of two cycles on which 0 ° = +0". 

Theorem 7. In the case of 1:1 resonance of a reversible system, in the neighbourhood of an equilibrium, 
local symmetric periodic motions exist which form Lyapunov families. These families exist both at exact 
resonance (e = 0) and at a distance e ~ 0; all the families are defined by the amplitude equation (8.2). 
In addition, two cycles, symmetric with respect to one another relative to the fixed set, form in the 
neighbourhood O~/~; the cycles are defined by formulae (8.5)-(8.7). 

To investigate the stability of the local periodic motions, one must formulate the variational equations 
for the family of periodic motions defined by formulae (8.2) or formulae (8.5)-(8.6), and then the 
characteristic equation. This cumbersome equation will not be given here. Suffice it to say that, for a 
symmetric solution, the equation always has one zero root and a pair of roots with opposite signs: 
p = +g2m-lp,. Hence, depending on the sign of the cycle p,Z, the periodic motion is either stable or 
hyperbolic in nature. 
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9. THE MODEL OF AN ELASTIC ROD SUBJECT TO 
A SERVO FORCE [17] 

Let us consider a reversible mechanical system comprising two identical rods of mass m and length l 
connected to each other and to a fixed centre by means of ideal hinges and helical springs of stiffness 
cl and c2. The second rod is subject, at its free end, to a servo force of fixed magnitude, directed along 
its axis. The non-deformed state of the rods corresponds to the rectangular configuration of the system. 
The system is in a horizontal plane. 

The motion of the system is described by Lagrange's equations in which the generalized coordinates 
are the angles % and q~2, namely, the deviations of the springs from the equilibrium state. Expanding 
the right-hand sides of the equations in powers of ~Pl and (P2 one finds that the quadratic terms in these 
expansions vanish. 

The system is stable in the linear approximation [17, p. 212] if 

a 2>27ctc 2, a = 2c 1+16c 2 -5F1  (9.1) 

Computing the frequencies 0) 1 and 0)2 of the linear system, we find 

2 ~ Ja2_27ClC2),  (101, 2 ~- (a+ 
7ml 

(01 -~ (02, 2 = 27C1(2 
a 

Then, if c~ = (p - 1)/(/) + 1), the system admits of a 1N resonance. I fp  = 1, one has non-simple 
elementary divisors, but if p = 2, the resonance is degenerate. Hence we deduce that Theorem 5 
completely solves the problem of Lyapunov families for all resonances, with the exception of the cases 
p = l a n d p = 3 .  

Let us consider 1:3 resonance in the case of identical springs (cl = c2 = c) and compute the coefficients 
of system (7.1): 

All=4.88d 2, A12=6.34d 2, B 1--2.12d 2 

A21 - - - -3 .48d  2, A22--- 2.51d 2, B 2 = 1.07d 2 

(d 2 is a certain positive number). Thus, in system (7.2) we have 

B1B 2 > O, B-~ 1.61d 4, A~ = - 7 . 5 8 8 ,  A ~ - -  9.218 

We will compute A = A~/A~ ~ -0.823. At exact resonance and for a small detuning (e = ~t ~+1, 
> 1), we obtain the case illustrated by the dashed curves in Fig. 5b. We find that k = 1/A~ = 0.108. 

Therefore, f (u)  > k*ffu for k* < 0. Consequently, there is only a family k* > 0. This family contains 
unstable periodic motions; the family is hyperbolic. 

Thus, at 1:3 resonance the rectangular configuration is unstable, and if the springs undergo a small 
deformation, a family of oscillations is formed. The nature of the oscillations is hyperbolic; the oscillations 
destroy the configuration of the system. 
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